Dijkstra Python Dijkstra 算法(Python 版):面向初学者的算法
返回节点之间的距离
6 如果目标节点已被访问,则停止。
6. 如果距离最小,则停止
未访问的节点之间是无穷大。
照片由 Ishan @seefromthesky 在 Unsplash 上拍摄
Dijkstra 算法可以帮你找到图中两个节点之间的最短路径。它是每个程序员的必学知识。它的维基百科页面提供了精美的动图和历史。
在本文中,我将使用Rosetta Code中久经考验的实现,并对其进行了一些修改,使其能够处理加权和非加权图数据,同时,我们还可以动态编辑图。我将逐块解释代码。
算法
这个算法非常简单。Dijkstra 只用了 20 分钟就创建了它,现在你也可以在同样的时间内学习编写代码。
- 将所有节点标记为未访问并存储它们。
- 将初始节点的距离设置为零,将其他节点的距离设置为无穷大。
- 选择距离最小的未访问节点,即当前节点。
- 查找当前节点未访问的邻居节点,并计算它们经过当前节点的距离。将新计算出的距离与已分配的距离进行比较,并保存较小的值。例如,如果节点 A 的距离为 6,且 AB 边的长度为 2,则经过 A 到 B 的距离为 6 + 2 = 8。如果 B 之前被标记为距离大于 8,则将其更改为 8。
- 将当前节点标记为已访问并将其从未访问集合中删除。
- 如果目标节点已被访问(在规划两个特定节点之间的路线时),或者未访问节点之间的最小距离为无穷大,则停止。如果不是,则重复步骤 3-6。
Python 实现
首先,导入和数据格式。原始实现建议使用 namedtuple 来存储边数据。我们将完全照做,但会为 cost 参数添加一个默认值。有很多方法可以做到这一点,找到最适合你的方法。
from collections import deque, namedtuple
# we'll use infinity as a default distance to nodes.
inf = float('inf')
Edge = namedtuple('Edge', 'start, end, cost')
def make_edge(start, end, cost=1):
return Edge(start, end, cost)
让我们初始化数据:
class Graph:
def __init__(self, edges):
# let's check that the data is right
wrong_edges = [i for i in edges if len(i) not in [2, 3]]
if wrong_edges:
raise ValueError('Wrong edges data: {}'.format(wrong_edges))
self.edges = [make_edge(*edge) for edge in edges]
我们来找找顶点。在最初的实现中,顶点是在 __init__ 中定义的,但我们需要在边发生变化时更新它们,所以我们将它们设为一个属性,每次处理该属性时都会重新计算它们。对于大型图来说,这可能不是最好的解决方案,但对于小型图来说,它还是可行的。
@property
def vertices(self):
return set(
# this piece of magic turns ([1,2], [3,4]) into [1, 2, 3, 4]
# the set above makes it's elements unique.
sum(
([edge.start, edge.end] for edge in self.edges), []
)
)
现在,让我们添加添加和删除功能。
def get_node_pairs(self, n1, n2, both_ends=True):
if both_ends:
node_pairs = [[n1, n2], [n2, n1]]
else:
node_pairs = [[n1, n2]]
return node_pairs
def remove_edge(self, n1, n2, both_ends=True):
node_pairs = self.get_node_pairs(n1, n2, both_ends)
edges = self.edges[:]
for edge in edges:
if [edge.start, edge.end] in node_pairs:
self.edges.remove(edge)
def add_edge(self, n1, n2, cost=1, both_ends=True):
node_pairs = self.get_node_pairs(n1, n2, both_ends)
for edge in self.edges:
if [edge.start, edge.end] in node_pairs:
return ValueError('Edge {} {} already exists'.format(n1, n2))
self.edges.append(Edge(start=n1, end=n2, cost=cost))
if both_ends:
self.edges.append(Edge(start=n2, end=n1, cost=cost))
让我们为每个节点寻找邻居:
@property
def neighbours(self):
neighbours = {vertex: set() for vertex in self.vertices}
for edge in self.edges:
neighbours[edge.start].add((edge.end, edge.cost))
return neighbours
现在是算法时间!我重命名了变量,以便更容易理解。
def dijkstra(self, source, dest):
assert source in self.vertices, 'Such source node doesn\'t exist'
# 1. Mark all nodes unvisited and store them.
# 2. Set the distance to zero for our initial node
# and to infinity for other nodes.
distances = {vertex: inf for vertex in self.vertices}
previous_vertices = {
vertex: None for vertex in self.vertices
}
distances[source] = 0
vertices = self.vertices.copy()
while vertices:
# 3. Select the unvisited node with the smallest distance,
# it's current node now.
current_vertex = min(
vertices, key=lambda vertex: distances[vertex])
# 6. Stop, if the smallest distance
# among the unvisited nodes is infinity.
if distances[current_vertex] == inf:
break
# 4. Find unvisited neighbors for the current node
# and calculate their distances through the current node.
for neighbour, cost in self.neighbours[current_vertex]:
alternative_route = distances[current_vertex] + cost
# Compare the newly calculated distance to the assigned
# and save the smaller one.
if alternative_route < distances[neighbour]:
distances[neighbour] = alternative_route
previous_vertices[neighbour] = current_vertex
# 5. Mark the current node as visited
# and remove it from the unvisited set.
vertices.remove(current_vertex)
path, current_vertex = deque(), dest
while previous_vertices[current_vertex] is not None:
path.appendleft(current_vertex)
current_vertex = previous_vertices[current_vertex]
if path:
path.appendleft(current_vertex)
return path
我们来使用它吧。
graph = Graph([
("a", "b", 7), ("a", "c", 9), ("a", "f", 14), ("b", "c", 10),
("b", "d", 15), ("c", "d", 11), ("c", "f", 2), ("d", "e", 6),
("e", "f", 9)])
print(graph.dijkstra("a", "e"))
>>> deque(['a', 'c', 'd', 'e'])
上面的整个代码:
from collections import deque, namedtuple
# we'll use infinity as a default distance to nodes.
inf = float('inf')
Edge = namedtuple('Edge', 'start, end, cost')
def make_edge(start, end, cost=1):
return Edge(start, end, cost)
class Graph:
def __init__(self, edges):
# let's check that the data is right
wrong_edges = [i for i in edges if len(i) not in [2, 3]]
if wrong_edges:
raise ValueError('Wrong edges data: {}'.format(wrong_edges))
self.edges = [make_edge(*edge) for edge in edges]
@property
def vertices(self):
return set(
sum(
([edge.start, edge.end] for edge in self.edges), []
)
)
def get_node_pairs(self, n1, n2, both_ends=True):
if both_ends:
node_pairs = [[n1, n2], [n2, n1]]
else:
node_pairs = [[n1, n2]]
return node_pairs
def remove_edge(self, n1, n2, both_ends=True):
node_pairs = self.get_node_pairs(n1, n2, both_ends)
edges = self.edges[:]
for edge in edges:
if [edge.start, edge.end] in node_pairs:
self.edges.remove(edge)
def add_edge(self, n1, n2, cost=1, both_ends=True):
node_pairs = self.get_node_pairs(n1, n2, both_ends)
for edge in self.edges:
if [edge.start, edge.end] in node_pairs:
return ValueError('Edge {} {} already exists'.format(n1, n2))
self.edges.append(Edge(start=n1, end=n2, cost=cost))
if both_ends:
self.edges.append(Edge(start=n2, end=n1, cost=cost))
@property
def neighbours(self):
neighbours = {vertex: set() for vertex in self.vertices}
for edge in self.edges:
neighbours[edge.start].add((edge.end, edge.cost))
return neighbours
def dijkstra(self, source, dest):
assert source in self.vertices, 'Such source node doesn\'t exist'
distances = {vertex: inf for vertex in self.vertices}
previous_vertices = {
vertex: None for vertex in self.vertices
}
distances[source] = 0
vertices = self.vertices.copy()
while vertices:
current_vertex = min(
vertices, key=lambda vertex: distances[vertex])
vertices.remove(current_vertex)
if distances[current_vertex] == inf:
break
for neighbour, cost in self.neighbours[current_vertex]:
alternative_route = distances[current_vertex] + cost
if alternative_route < distances[neighbour]:
distances[neighbour] = alternative_route
previous_vertices[neighbour] = current_vertex
path, current_vertex = deque(), dest
while previous_vertices[current_vertex] is not None:
path.appendleft(current_vertex)
current_vertex = previous_vertices[current_vertex]
if path:
path.appendleft(current_vertex)
return path
graph = Graph([
("a", "b", 7), ("a", "c", 9), ("a", "f", 14), ("b", "c", 10),
("b", "d", 15), ("c", "d", 11), ("c", "f", 2), ("d", "e", 6),
("e", "f", 9)])
print(graph.dijkstra("a", "e"))
PS:对于像我一样读过更多有关巫师的书而不是算法书的人来说,是 Edsger Dijkstra,而不是 Sigismund。
文章来源:https://dev.to/mxl/dijkstras-algorithm-in-python-algorithms-for-beginners-dkc