SHA-2 工作原理(SHA-256)

2025-06-10

SHA-2 工作原理(SHA-256)

孩子看着楼梯台阶

文章“SHA-2 的工作原理(SHA-256)”首先出现在Qvault上。

SHA-2(安全哈希算法 2),SHA-256 是其中的一部分,是目前最流行的哈希算法之一。在本文中,我们将尽可能简单地分解该算法的每个步骤,并手动完成一个实际示例。

SHA-2 以其安全性(它不像SHA-1 那样容易被破解)和速度而闻名。在无需生成密钥的情况下(例如比特币挖矿),像 SHA-2 这样的快速哈希算法通常占据主导地位。

什么是哈希函数?

如果您想了解有关哈希函数的更多信息,请点击此处。为了继续学习,我们先来回顾一下哈希函数的三个主要用途:

  • 确定性地扰乱数据
  • 接受任意长度的输入并输出固定长度的结果
  • 不可逆地操纵数据。输入不能从输出中推导出来

SHA-2 与 SHA-256

SHA-2 是一种算法,是一种对数据进行哈希处理的通用方法。SHA-256 设置了一些附加常量来定义 SHA-2 算法的行为。其中一个常量就是输出大小。“256”和“512”指的是它们各自的输出摘要大小(以位为单位)。

让我们逐步了解 SHA-256 的一个示例。

SHA-256“Hello World”;步骤 1 – 预处理

  • 将“hello world”转换为二进制:
01101000 01100101 01101100 01101100 01101111 00100000 01110111 01101111
01110010 01101100 01100100
Enter fullscreen mode Exit fullscreen mode
  • 附加一个 1:
01101000 01100101 01101100 01101100 01101111 00100000 01110111 01101111
01110010 01101100 01100100 1
Enter fullscreen mode Exit fullscreen mode
  • 用 0 填充,直到数据是 512 的倍数,减去 64 位(在我们的例子中为 448 位):
01101000 01100101 01101100 01101100 01101111 00100000 01110111 01101111
01110010 01101100 01100100 10000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Enter fullscreen mode Exit fullscreen mode
  • 在末尾附加 64 位,这 64 位是一个大端整数,以二进制形式表示原始输入的长度。在我们的例子中是 88,或者二进制表示为“1011000”。
01101000 01100101 01101100 01101100 01101111 00100000 01110111 01101111
01110010 01101100 01100100 10000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 01011000
Enter fullscreen mode Exit fullscreen mode

现在我们有了输入,它总是可以被 512 整除。

第 2 步 - 初始化哈希值(h)

现在我们创建 8 个哈希值。这些是硬编码常量,分别表示前 8 个素数的平方根小数部分的前 32 位:2、3、5、7、11、13、17、19

h0 := 0x6a09e667
h1 := 0xbb67ae85
h2 := 0x3c6ef372
h3 := 0xa54ff53a
h4 := 0x510e527f
h5 := 0x9b05688c
h6 := 0x1f83d9ab
h7 := 0x5be0cd19
Enter fullscreen mode Exit fullscreen mode

步骤 3 – 初始化轮数常数 (k)

与步骤 2 类似,我们创建一些常量。这次,一共有 64 个常量。每个值 (0-63) 是前 64 个素数 (2 – 311) 立方根小数部分的前 32 位。

0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5 0x3956c25b 0x59f111f1 0x923f82a4 0xab1c5ed5
0xd807aa98 0x12835b01 0x243185be 0x550c7dc3 0x72be5d74 0x80deb1fe 0x9bdc06a7 0xc19bf174
0xe49b69c1 0xefbe4786 0x0fc19dc6 0x240ca1cc 0x2de92c6f 0x4a7484aa 0x5cb0a9dc 0x76f988da
0x983e5152 0xa831c66d 0xb00327c8 0xbf597fc7 0xc6e00bf3 0xd5a79147 0x06ca6351 0x14292967
0x27b70a85 0x2e1b2138 0x4d2c6dfc 0x53380d13 0x650a7354 0x766a0abb 0x81c2c92e 0x92722c85
0xa2bfe8a1 0xa81a664b 0xc24b8b70 0xc76c51a3 0xd192e819 0xd6990624 0xf40e3585 0x106aa070
0x19a4c116 0x1e376c08 0x2748774c 0x34b0bcb5 0x391c0cb3 0x4ed8aa4a 0x5b9cca4f 0x682e6ff3
0x748f82ee 0x78a5636f 0x84c87814 0x8cc70208 0x90befffa 0xa4506ceb 0xbef9a3f7 0xc67178f2
Enter fullscreen mode Exit fullscreen mode

步骤 4 – 块循环

以下步骤将针对输入中的每个 512 位数据块进行。在本例中,由于“hello world”很短,因此只有一个数据块。在循环的每次迭代中,我们将修改哈希值 h0-h7,这些值将成为最终的输出。

步骤 5 – 创建消息时间表 (w)

  • 将步骤 1 中的输入数据复制到一个新数组中,其中每个条目都是一个 32 位字:
01101000011001010110110001101100 01101111001000000111011101101111
01110010011011000110010010000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000001011000
Enter fullscreen mode Exit fullscreen mode
  • 再添加 48 个单词并将其初始化为零,这样我们就有了一个数组w[0…63]
01101000011001010110110001101100 01101111001000000111011101101111
01110010011011000110010010000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000001011000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
...
...
00000000000000000000000000000000 00000000000000000000000000000000
Enter fullscreen mode Exit fullscreen mode
  • 使用以下算法修改数组末尾的零索引:
  • 对于来自 w[16…63] 的 i :
    • s0 = (w[i-15] 右旋 7) xor (w[i-15] 右旋 18) xor (w[i-15] 右移 3)
    • s1 = (w[i- 2] 右旋 17) xor (w[i- 2] 右旋 19) xor (w[i- 2] 右移 10)
    • w[i] = w[i-16] + s0 + w[i-7] + s1

让我们执行 w[16] 来看看它是如何工作的:

w[1] rightrotate 7:
  01101111001000000111011101101111 -> 11011110110111100100000011101110
w[1] rightrotate 18:
  01101111001000000111011101101111 -> 00011101110110111101101111001000
w[1] rightshift 3:
  01101111001000000111011101101111 -> 00001101111001000000111011101101

s0 = 11011110110111100100000011101110 XOR 00011101110110111101101111001000 XOR 00001101111001000000111011101101

s0 = 11001110111000011001010111001011

w[14] rightrotate 17:
  00000000000000000000000000000000 -> 00000000000000000000000000000000
w[14] rightrotate19:
  00000000000000000000000000000000 -> 00000000000000000000000000000000
w[14] rightshift 10:
  00000000000000000000000000000000 -> 00000000000000000000000000000000

s1 = 00000000000000000000000000000000 XOR 00000000000000000000000000000000 XOR 00000000000000000000000000000000

s1 = 00000000000000000000000000000000

w[16] = w[0] + s0 + w[9] + s1

w[16] = 01101000011001010110110001101100 + 11001110111000011001010111001011 + 00000000000000000000000000000000 + 00000000000000000000000000000000

// addition is calculated modulo 2^32

w[16] = 00110111010001110000001000110111

Enter fullscreen mode Exit fullscreen mode

这样,我们的消息安排 (w) 中就剩下 64 个单词:

01101000011001010110110001101100 01101111001000000111011101101111
01110010011011000110010010000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000 00000000000000000000000001011000
00110111010001110000001000110111 10000110110100001100000000110001
11010011101111010001000100001011 01111000001111110100011110000010
00101010100100000111110011101101 01001011001011110111110011001001
00110001111000011001010001011101 10001001001101100100100101100100
01111111011110100000011011011010 11000001011110011010100100111010
10111011111010001111011001010101 00001100000110101110001111100110
10110000111111100000110101111101 01011111011011100101010110010011
00000000100010011001101101010010 00000111111100011100101010010100
00111011010111111110010111010110 01101000011001010110001011100110
11001000010011100000101010011110 00000110101011111001101100100101
10010010111011110110010011010111 01100011111110010101111001011010
11100011000101100110011111010111 10000100001110111101111000010110
11101110111011001010100001011011 10100000010011111111001000100001
11111001000110001010110110111000 00010100101010001001001000011001
00010000100001000101001100011101 01100000100100111110000011001101
10000011000000110101111111101001 11010101101011100111100100111000
00111001001111110000010110101101 11111011010010110001101111101111
11101011011101011111111100101001 01101010001101101001010100110100
00100010111111001001110011011000 10101001011101000000110100101011
01100000110011110011100010000101 11000100101011001001100000111010
00010001010000101111110110101101 10110000101100000001110111011001
10011000111100001100001101101111 01110010000101111011100000011110 10100010110101000110011110011010 00000001000011111001100101111011
11111100000101110100111100001010 11000010110000101110101100010110
Enter fullscreen mode Exit fullscreen mode

步骤 6 – 压缩

  • 初始化变量a、b、c、d、e、f、g、h,并分别设置为当前哈希值。h0 、h1、h2、h3、h4、h5、h6、h7
  • 运行压缩循环。压缩循环会改变a…h的值。压缩循环如下:
  • i 从 0 到 63
    • S1 = (e 右旋 6) xor (e 右旋 11) xor (e 右旋 25)
    • ch = (e 和 f) xor ((非 e) 和 g)
    • temp1 = h + S1 + ch + k[i] + w[i]
    • S0 = (右旋2) xor (右旋13) xor (右旋22)
    • maj = (a 和 b) xor (a 和 c) xor (b 和 c)
    • 温度2 := S0 + maj
    • h=g
    • g=f
    • e = d + 温度1
    • d = c
    • c = b
    • b = a
    • a = 温度1 + 温度2

让我们进行第一次迭代,所有加法都以 2^32 为模进行计算:

a = 0x6a09e667 = 01101010000010011110011001100111
b = 0xbb67ae85 = 10111011011001111010111010000101
c = 0x3c6ef372 = 00111100011011101111001101110010
d = 0xa54ff53a = 10100101010011111111010100111010
e = 0x510e527f = 01010001000011100101001001111111
f = 0x9b05688c = 10011011000001010110100010001100
g = 0x1f83d9ab = 00011111100000111101100110101011
h = 0x5be0cd19 = 01011011111000001100110100011001

e rightrotate 6:
  01010001000011100101001001111111 -> 11111101010001000011100101001001
e rightrotate 11:
  01010001000011100101001001111111 -> 01001111111010100010000111001010
e rightrotate 25:
  01010001000011100101001001111111 -> 10000111001010010011111110101000
S1 = 11111101010001000011100101001001 XOR 01001111111010100010000111001010 XOR 10000111001010010011111110101000
S1 = 00110101100001110010011100101011

e and f:
    01010001000011100101001001111111
  & 10011011000001010110100010001100 =
    00010001000001000100000000001100
not e:
  01010001000011100101001001111111 -> 10101110111100011010110110000000
(not e) and g:
    10101110111100011010110110000000
  & 00011111100000111101100110101011 =
    00001110100000011000100110000000
ch = (e and f) xor ((not e) and g)
   = 00010001000001000100000000001100 xor 00001110100000011000100110000000
   = 00011111100001011100100110001100

// k[i] is the round constant
// w[i] is the batch
temp1 = h + S1 + ch + k[i] + w[i]
temp1 = 01011011111000001100110100011001 + 00110101100001110010011100101011 + 00011111100001011100100110001100 + 1000010100010100010111110011000 + 01101000011001010110110001101100
temp1 = 01011011110111010101100111010100

a rightrotate 2:
  01101010000010011110011001100111 -> 11011010100000100111100110011001
a rightrotate 13:
  01101010000010011110011001100111 -> 00110011001110110101000001001111
a rightrotate 22:
  01101010000010011110011001100111 -> 00100111100110011001110110101000
S0 = 11011010100000100111100110011001 XOR 00110011001110110101000001001111 XOR 00100111100110011001110110101000
S0 = 11001110001000001011010001111110

a and b:
    01101010000010011110011001100111
  & 10111011011001111010111010000101 =
    00101010000000011010011000000101
a and c:
    01101010000010011110011001100111
  & 00111100011011101111001101110010 =
    00101000000010001110001001100010
b and c:
    10111011011001111010111010000101
  & 00111100011011101111001101110010 =
    00111000011001101010001000000000
maj = (a and b) xor (a and c) xor (b and c)
    = 00101010000000011010011000000101 xor 00101000000010001110001001100010 xor 00111000011001101010001000000000 
    = 00111010011011111110011001100111

temp2 = S0 + maj
      = 11001110001000001011010001111110 + 00111010011011111110011001100111
      = 00001000100100001001101011100101

h = 00011111100000111101100110101011
g = 10011011000001010110100010001100
f = 01010001000011100101001001111111
e = 10100101010011111111010100111010 + 01011011110111010101100111010100
  = 00000001001011010100111100001110
d = 00111100011011101111001101110010
c = 10111011011001111010111010000101
b = 01101010000010011110011001100111
a = 01011011110111010101100111010100 + 00001000100100001001101011100101
  = 01100100011011011111010010111001
Enter fullscreen mode Exit fullscreen mode

整个计算过程需要重复 63 次,期间会修改变量 ah。我们不会手动操作,但可以使用 ender 函数:

h0 = 6A09E667 = 01101010000010011110011001100111
h1 = BB67AE85 = 10111011011001111010111010000101
h2 = 3C6EF372 = 00111100011011101111001101110010
h3 = A54FF53A = 10100101010011111111010100111010
h4 = 510E527F = 01010001000011100101001001111111
h5 = 9B05688C = 10011011000001010110100010001100
h6 = 1F83D9AB = 00011111100000111101100110101011
h7 = 5BE0CD19 = 01011011111000001100110100011001

a = 4F434152 = 001001111010000110100000101010010
b = D7E58F83 = 011010111111001011000111110000011
c = 68BF5F65 = 001101000101111110101111101100101
d = 352DB6C0 = 000110101001011011011011011000000
e = 73769D64 = 001110011011101101001110101100100
f = DF4E1862 = 011011111010011100001100001100010
g = 71051E01 = 001110001000001010001111000000001
h = 870F00D0 = 010000111000011110000000011010000
Enter fullscreen mode Exit fullscreen mode

步骤 7 – 修改最终值

压缩循环结束后,在循环中,我们仍然通过向哈希值添加相应的变量来修改哈希值,啊。照例,所有加法都以 2^32 为模

h0 = h0 + a = 10111001010011010010011110111001
h1 = h1 + b = 10010011010011010011111000001000
h2 = h2 + c = 10100101001011100101001011010111
h3 = h3 + d = 11011010011111011010101111111010
h4 = h4 + e = 11000100100001001110111111100011
h5 = h5 + f = 01111010010100111000000011101110
h6 = h6 + g = 10010000100010001111011110101100
h7 = h7 + h = 11100010111011111100110111101001
Enter fullscreen mode Exit fullscreen mode

步骤 8 – 连接最终哈希值

最后但同样重要的是,将它们全部组合在一起!

digest = h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
       = B94D27B9934D3E08A52E52D7DA7DABFAC484EFE37A5380EE9088F7ACE2EFCDE9
Enter fullscreen mode Exit fullscreen mode

完成了!我们已经非常详细地讲解了 SHA-256 的每个步骤(除了一些迭代)🙂

伪代码

如果你想以伪代码形式查看我们上面执行的所有步骤,那么这里是直接来自WikiPedia的:

Note 1: All variables are 32 bit unsigned integers and addition is calculated modulo 232
Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 63
Note 3: The compression function uses 8 working variables, a through h
Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
    and when parsing message block data from bytes to words, for example,
    the first word of the input message "abc" after padding is 0x61626380

Initialize hash values:
(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
h0 := 0x6a09e667
h1 := 0xbb67ae85
h2 := 0x3c6ef372
h3 := 0xa54ff53a
h4 := 0x510e527f
h5 := 0x9b05688c
h6 := 0x1f83d9ab
h7 := 0x5be0cd19

Initialize array of round constants:
(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
k[0..63] :=
   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

Pre-processing (Padding):
begin with the original message of length L bits
append a single '1' bit
append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K + 64 is a multiple of 512
append L as a 64-bit big-endian integer, making the total post-processed length a multiple of 512 bits

Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
    create a 64-entry message schedule array w[0..63] of 32-bit words
    (The initial values in w[0..63] don't matter, so many implementations zero them here)
    copy chunk into first 16 words w[0..15] of the message schedule array

    Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array:
    for i from 16 to 63
        s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
        s1 := (w[i- 2] rightrotate 17) xor (w[i- 2] rightrotate 19) xor (w[i- 2] rightshift 10)
        w[i] := w[i-16] + s0 + w[i-7] + s1

    Initialize working variables to current hash value:
    a := h0
    b := h1
    c := h2
    d := h3
    e := h4
    f := h5
    g := h6
    h := h7

    Compression function main loop:
    for i from 0 to 63
        S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
        ch := (e and f) xor ((not e) and g)
        temp1 := h + S1 + ch + k[i] + w[i]
        S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
        maj := (a and b) xor (a and c) xor (b and c)
        temp2 := S0 + maj

        h := g
        g := f
        f := e
        e := d + temp1
        d := c
        c := b
        b := a
        a := temp1 + temp2

    Add the compressed chunk to the current hash value:
    h0 := h0 + a
    h1 := h1 + b
    h2 := h2 + c
    h3 := h3 + d
    h4 := h4 + e
    h5 := h5 + f
    h6 := h6 + g
    h7 := h7 + h

Produce the final hash value (big-endian):
digest := hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
Enter fullscreen mode Exit fullscreen mode

感谢阅读

如果您有任何问题或意见,请关注我们的 Twitter @q_vault

在Qvault Classroom上参加类似游戏的编码课程

订阅我们的时事通讯以获取更多教育文章

文章“SHA-2 的工作原理(SHA-256)”首先出现在Qvault上。

鏂囩珷鏉ユ簮锛�https://dev.to/wagslane/how-sha-2-works-step-by-step-sha-256-11ci
PREV
JavaScript Map 函数详解——深入解析
NEXT
基本 Bash 自动化:用于组织我的下载文件夹的脚本