✨ 每个开发者都需要知道的 7 个 AI 库(成为奇才)🧙♂️ 🪄
TL;DR
如今,任何开发人员都可以利用人工智能构建强大的东西。
无需成为 ML 专家。
以下是 7 个最佳库,可用于增强您的开发能力,并以最先进的 AI 功能给用户留下深刻印象。
这些可以给你的项目带来神奇的力量,所以不要忘记点赞和支持它们🌟
1. CopilotTextarea - React 应用中基于 AI 的写作
<textarea>
使用 Github CopilotX 的功能来替代任何反应。
自动完成、插入、编辑。
可以实时提供任何上下文,或者由开发人员提前提供。
import { CopilotTextarea } from "@copilotkit/react-textarea";
import { CopilotProvider } from "@copilotkit/react-core";
// Provide context...
useMakeCopilotReadable(...)
// in your component...
<CopilotProvider>
<CopilotTextarea/>
</CopilotProvider>`
```
Star CopilotTextarea ⭐️
---
## 2. Tavily GPT Researcher - Get an LLM to Search the Web & Databases

Tavily enables you to add GPT-powered research and content generation tools to your React applications, enhancing their data processing and content creation capabilities.
```tsx
# Create an assistant
assistant = client.beta.assistants.create(
instructions=assistant_prompt_instruction,
model="gpt-4-1106-preview",
tools=[{
"type": "function",
"function": {
"name": "tavily_search",
"description": "Get information on recent events from the web.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query to use. For example: 'Latest news on Nvidia stock performance'"},
},
"required": ["query"]
}
}
}]
)
```
Star Tavily ⭐️
---
## 3. Pezzo.ai - Observability, Cost & Prompt Engineering Platform

Centralized platform for managing your OpenAI calls.
Optimize your prompts & token use. Keep track of your AI use.
Free & easy to integrate.
```tsx
const prompt = await pezzo.getPrompt("AnalyzeSentiment");
const response = await openai.chat.completions.create(prompt);
```
Star Pezzo ⭐️
---
## 4. [CopilotPortal](https://github.com/RecursivelyAI/CopilotKit): Embed an actionable LLM chatbot inside your app.

A context-aware LLM chatbot inside your application that answers questions and takes actions.
Get a working chatBot with a few lines of code, then customize and embed as deeply as you need to.
```tsx
import "@copilotkit/react-ui/styles.css";
import { CopilotProvider } from "@copilotkit/react-core";
import { CopilotSidebarUIProvider } from "@copilotkit/react-ui";
export default function App(): JSX.Element {
return (
<CopilotProvider chatApiEndpoint="/api/copilotkit/chat">
<CopilotSidebarUIProvider>
<YourContent />
</CopilotSidebarUIProvider>
</CopilotProvider>
);
}
```
Star CopilotPortal ⭐️
---
## 5. LangChain - Pull together AIs into action chains.

Easy-to-use API and library for adding LLMs into apps.
Link together different AI components and models.
Easily embed context and semantic data for powerful integrations.
```tsx
from langchain.llms import OpenAI
from langchain import PromptTemplate
llm = OpenAI(model_name="text-davinci-003", openai_api_key="YourAPIKey") # Notice "food" below, that is a placeholder for another value later
template = """ I really want to eat {food}. How much should I eat? Respond in one short sentence """
prompt = PromptTemplate(
input_variables=["food"],
template=template,
)
final_prompt = prompt.format(food="Chicken")
print(f"Final Prompt: {final_prompt}")
print("-----------")
print(f"LLM Output: {llm(final_prompt)}")
```
Star LangChain ⭐️
---
## 6. [Weaviate](https://github.com/weaviate/weaviate) - Vector Database for AI-Enhanced Projects

Weaviate is a vector database optimized for fast, efficient searches across large datasets.
It supports integration with AI models and services from providers like OpenAI and Hugging Face, enabling advanced tasks such as data classification and natural language processing.
It's a cloud-native solution and highly scalable to meet evolving data demands.
```tsx
import weaviate
import json
client = weaviate.Client(
embedded_options=weaviate.embedded.EmbeddedOptions(),
)
uuid = client.data_object.create({
})
obj = client.data_object.get_by_id(uuid, class_name='MyClass')
print(json.dumps(obj, indent=2))
```
Star Weaviate ⭐️
---
## 7. [PrivateGPT](https://github.com/imartinez/privateGPT) - Chat with your Docs, 100% privately 💡

PrivateGPT allows for secure, GPT-driven document interaction within your applications, ensuring data privacy and enhancing context-aware processing capabilities.
PrivateGPT ensures privacy by locally processing and storing documents and context, without sending data to external servers.
```tsx
from privategpt import PrivateGPT, DocumentIngestion, ChatCompletion
client = PrivateGPT(api_key='your_api_key')
def process_documents_and_chat(query, documents):
ingestion_result = DocumentIngestion(client, documents)
chat_result = ChatCompletion(client, query, context=ingestion_result.context)
return chat_result
documents = ['doc1.txt', 'doc2.txt']
query = "What is the summary of the documents?"
result = process_documents_and_chat(query, documents)
print(result)
```
Star PrivateGPT ⭐️
---
## [Bonus Library]. SwirlSearch - AI powered search.

LLM-powered search, summaries and output.
Searches multiple content sources simultaneously into integrated output.
Powerful for tailored in-app integrations of various data sources.
Star SwirlSearch ⭐️
---
Thanks for reading!
I hope these help you build some awesome stuff with AI.
Please like if you enjoyed & comment any other libraries or topics you would like to see.